A Similarity Based Approach for Chemical Category Classification

Ana Gallegos Saliner, Grace Patlewicz, Andrew P. Worth

2005
A Similarity Based Approach for Chemical Category Classification

Ana Gallegos Saliner, Grace Patlewicz, Andrew P. Worth
LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int)
Abstract

This report describes the main outcomes of research carried out during 2005 by the European Chemicals Bureau (Computational Toxicology Action) as one of the Institute for Health & Consumer Protection (IHCP) Exploratory Research Projects. The original aim of this project was to develop a computational method to facilitate the classification of chemicals into similarity-based chemical categories, which would be both useful for building (Q)SAR models (research application) and for defining chemical category proposals (regulatory application).

Preparatory work was conducted to investigate the notion of chemical similarity and to explore how it could be applied to both the development of chemical categories as well defining the domain of applicability for SAR models, e.g. structural alerts.

The state of the art of chemical similarity indices was reviewed, and a selection of those chemical similarity indices that showed greatest promise for describing toxicological and ecotoxicological effects were described in more detail.

A scoping study was conducted to explore the utility of similarity measures for describing the applicability domain of structural alerts. A set of skin sensitisation structural rules that are currently encoded into the Derek expert system were explored. Recommendations for further research work are proposed.

A multi-stakeholder workshop, involving academic scientists, regulators and industry participants, was organised to discuss various issues surrounding chemical similarity, in particular how such indices could be applied in the formation of chemical categories that are appropriate for regulatory use.

Finally, a plan to develop a software tool capable of calculating and applying similarity indices has is described.
Table of Contents

LIST OF ABBREVIATIONS..6

INTRODUCTION: GENERAL BACKGROUND...7

LITERATURE REVIEW ON CHEMICAL SIMILARITY...9
 Introduction 9
 Historical concept of similarity 9
 Current applications of chemical similarity in toxicity prediction 10
 Chemical Similarity 11
 Representation of Chemical Structures 12
 Similarity indices 14

THE USE OF SIMILARITY MEASURES IN DEFINING THE APPLICABILITY DOMAIN OF SKIN SENSITISATION SARS ..17
 Validation of Sensitisation Rules within the DEREK Expert System 17
 Leadscope 26
 Conclusions 26

WORKSHOP ON CHEMICAL SIMILARITY AND TTC APPROACHES ...27
 Follow-up of the meeting 27

FURTHER WORK ..27

ACKNOWLEDGEMENTS...27

REFERENCES ..28

APPENDIX 1. ...33

APPENDIX 2. ...34

APPENDIX 3. ...36
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q)SAR</td>
<td>(Quantitative) Structure-Activity Relationships</td>
</tr>
<tr>
<td>(Q)SPR</td>
<td>(Quantitative) Structure-Property Relationships</td>
</tr>
<tr>
<td>(Q)STR</td>
<td>(Quantitative) Structure-Toxicity Relationships</td>
</tr>
<tr>
<td>AD</td>
<td>Applicability Domain</td>
</tr>
<tr>
<td>CADD</td>
<td>Computer Aided-Drug Design</td>
</tr>
<tr>
<td>CAMD</td>
<td>Computer-Aided Molecular Design</td>
</tr>
<tr>
<td>CEFIC</td>
<td>European Chemical Industry Council</td>
</tr>
<tr>
<td>DEREK</td>
<td>Deductive Estimation of Risk from Existing Knowledge</td>
</tr>
<tr>
<td>ECB</td>
<td>European Chemicals Bureau</td>
</tr>
<tr>
<td>FIRM</td>
<td>Formal Inference-based Recursive Modelling Analysis</td>
</tr>
<tr>
<td>HTS</td>
<td>High Throughput Screening</td>
</tr>
<tr>
<td>ICCA</td>
<td>International Council of Chemical Associations</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
<tr>
<td>LLASA</td>
<td>Logic and Heuristics Applied to Synthetic Analysis</td>
</tr>
<tr>
<td>LLNA</td>
<td>Local Lymph Node Assay</td>
</tr>
<tr>
<td>Log Kp</td>
<td>Logarithm of the permeability coefficient</td>
</tr>
<tr>
<td>Log P</td>
<td>Logarithm of the octanol/water partition coefficient</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>QSI</td>
<td>Quantum Similarity Indices</td>
</tr>
<tr>
<td>QSM</td>
<td>Quantum Similarity Measures</td>
</tr>
<tr>
<td>REACH</td>
<td>Registration, Evaluation, and Authorisation of Chemicals</td>
</tr>
<tr>
<td>RIP</td>
<td>REACH-implementation project</td>
</tr>
<tr>
<td>SMILES</td>
<td>Simplified Molecular Input Line Entry Specification</td>
</tr>
<tr>
<td>TTC</td>
<td>Thresholds of Toxicological Concern</td>
</tr>
</tbody>
</table>
Introduction: General Background

Under the current legislation for New and Existing Chemicals in the European Union, the use of structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs), collectively referred to as (Q)SARs, for the regulatory assessment of chemicals is limited. On 29 October 2003, the European Commission adopted a legislative proposal that foresees the introduction of a new regulatory system called REACH (Registration, Evaluation, and Authorisation of Chemicals) [1]. This calls for equivalent information requirements to be applied to New and Existing Chemicals. The proposed REACH legislation is expected to result in some 30,000 chemicals requiring evaluation for toxicity, ecotoxicity and environmental fate, over a period of 11 years. For reasons of cost, practicality, and animal welfare, this assessment exercise cannot be achieved by applying traditional test methods. Instead, the REACH proposal foresees greater use of non-testing approaches or in silico methods, such as QSARs, SARs, read-across and chemical categories. Analyses carried out by the ECB have shown that such non-testing approaches have the potential to provide an efficient means of obtaining the required information on chemicals whilst reducing testing costs and the amount of (animal) testing necessary [2,3].

Guidance on the use of (Q)SARs is provided in Annex IX of the proposed REACH legislation. It states that (Q)SARs may be used to indicate the presence or absence of a certain dangerous property if the following conditions are met [4]:

- results are derived from a (Q)SAR model whose scientific validity has been established
- results are adequate for the purpose of classification and labelling and risk assessment
- adequate and reliable documentation of the method is provided

Annex IX also states that chemicals may be classified on the basis of their (eco)toxicological hazard by applying chemical grouping approaches (e.g. read-across, chemical categories [5]).

To date, the acceptance of (Q)SARs has been limited due to a lack of common understanding in how to evaluate the scientific validity of the models. Recently several initiatives have emerged to explore ways of evaluating validity. The first was a Workshop organised by CEFIC/ICCA in Setubal in 2002 [6] which established principles for the validity of (Q)SARs. These were then evaluated by the OECD Ad hoc Group for (Q)SARs and are now referred to as the ‘OECD principles for (Q)SAR validation’. According to these principles, “to facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated with the following information:

- a defined endpoint
- an unambiguous algorithm
• a defined applicability domain (see [7])
• appropriate measures of goodness-of-fit, robustness and predictivity
• a mechanistic interpretation, if possible”

The principles provide a useful framework and practical guidance of how to demonstrate concordance for a (Q)SAR is being developed [8]. Limited guidance for developing chemical categories does exist [5] but the tools for their practical implementation are still lacking [9].

In practice, the acceptance and use of (Q)SARs under REACH will depend on the availability of technical guidance and tools. Indeed, Annex IX of the REACH proposal indicates that the Chemicals Agency, in collaboration with the Commission, Member States and interested parties will develop and provide guidance in assessing which (Q)SARs will meet the above-mentioned conditions and provide examples. The development of such guidance and tools is being carried out and coordinated by European Commission’s Joint Research Centre (JRC). Within the JRC, the European Chemicals Bureau (ECB) [10] is responsible for:

a) providing scientific and technical support to the European Commission and EU Member States in relation to current legislation on chemicals, biocides and plant protection products;
b) coordinating the scientific and technical preparations needed for the implementation of the REACH legislation – the so-called REACH-implementation projects (RIPs); and
c) coordinating the JRC activity on computational toxicology, which is providing input into the development of technical guidance for REACH, such as guidance on the use of (Q)SARs and related estimation approaches, and guidance on integrated testing strategies.

Chemical category development is dependent on grouping chemicals on the basis of their structural similarity but it is well known that structural similarity does not always lead to similarity in activity. There is a need to provide guidance on how to encode “similarity in activity” in a meaningful way that will assist in category development. A group of “similar” chemicals with respect to their properties can be viewed as an extension of a SAR.

The OECD has developed some guidance on how to group chemicals [5] and some examples of chemical categories have been provided by the US EPA [11]. However the OECD guidance is written at a very generic level and does not explain how chemical similarity should be interpreted in a context-dependent and scientifically meaningful way.

The ECB has performed a feasibility exercise to identify quantitative measures of chemical similarity and apply them to evaluate the applicability domain for a number of skin sensitisation structural alerts. The outcome of this work has helped to illustrate the challenges in describing the
applicability domain of structural alerts. In addition, it has provided some proposals for how to justify a read across and how chemical categories could be formulated.

Literature Review on Chemical Similarity

A literature review on chemical similarity indices and available approaches for encoding chemical similarity has been carried out. Attention has been focused on the application of similarity indices for encoding toxicological and ecotoxicological activity. A range of different approaches for encoding similarity have been illustrated with emphasis on how such indices can be used in the development of chemical categories.

Introduction

The definition of a similarity measure between two chemicals has been an ancestral question in theoretical chemistry. Chemical similarity attempts to answer the question: “how similar is a given molecule to another?” In general, it is assumed that the similarity principle holds, that is, similar compounds have similar activities. This assumption has been the driving force for the development of a pool of computer-based methods for toxicity prediction, including (Quantitative) Structure-Activity Relationships - (Q)SARs. The application of molecular similarity concepts in QSAR analysis is reviewed in the following sections.

Historical concept of similarity

The intuitive concept of similarity is strongly attached to knowledge. The human mind unconsciously makes associations from visual perception of objects or situations and establishes common characteristics and differences by applying latent criteria. The human mind instinctively compares new knowledge with existing knowledge, using criteria from experience. It is the processing of similarities and dissimilarities by the human mind that leads to the learning of something new [12].

The similarity concept is rooted in science but has also been the subject of study in both psychology [13] and philosophy [14]. The first contributions to similarity date back to ancient Greek philosophy when comparative measures between geometrical shapes were already proposed and established.

Similarity is also an important geometrical and spatial concept in mathematics. Mathematicians refer to objects as “similar” if they have the same shape but not necessarily the same size, i.e. proportional objects with the same ratio [15]. The Pythagoras theorem was based on the similarity of triangles.
The underlying assumption in chemistry is that similar molecules possess similar properties, and this has been the foundation of empirical relationships between structure and activity. In 1869 Mendeleev [16] formulated the periodic table of elements through observation and by comparison of the similar chemical behaviour and reactivity of elements. By systemically considering atomic properties, Mendeleev was able to classify all the elements into a table leaving gaps for unknown substances. By noting patterns between the combinations of well-classified elements, he was able to predict both undiscovered elements as well as their physicochemical properties.

In contrast, the systematic formulation of the cognitive processes underlying the evaluation of similarity has proven to be much more difficult. In the chemistry domain, various proposals have attempted to measure the similarity between two molecules, in order to obtain unbiased and unambiguous quantitative measures of molecular similarity.

Current applications of chemical similarity in toxicity prediction

Nowadays, computer-based similarity techniques are mainly used in the context of rational molecular design strategies in the drug discovery process.

For a long time, medicinal chemists have systematically modified lead compounds. Once a candidate structure is identified, analogue compounds with the optimal desired properties are investigated. These should have an improved biological activity and pharmacokinetic characteristics, but diminished adverse effects such as toxicity. The biological phase includes comprehensive animal and human testing for specificity, bioavailability, and lack of toxicity. Since it can take months and considerable resources to synthesise a new compound for biological testing by using traditional techniques, there has been a drive to supplement conventional drug discovery technologies with molecular and drug design strategies [17]. Modern methods include computer-assisted data handling, data storage, retrieval and processing from chemical databases, structure-based design, structure-function correlation studies, and other statistical techniques. Hence, the effective design of chemical structures with desirable therapeutic properties is based on Computer-Aided Molecular Design (CAMD), more specifically called Computer Aided-Drug Design (CADD) [18-23]. These techniques comprise new methodologies, such as molecular modelling, computer simulation and QSARs.

The strategy of structure-based molecular design has been proven to be very successful in the pharmaceutical industry [24]. Where structural information about the biological target is lacking, the strategy of lead finding still involves the synthesis and testing of widely diverse compounds. The systematic variation of substituents in a molecule has been the subject of various studies. As it is not straightforward to select a representative subset of substituents that adequately covers the
multidimensional parameter space, relevant properties are selected from large sets of property descriptors by using statistical techniques.

In combinatorial chemistry, enormous libraries of millions of compounds are analysed by High Throughput Screening (HTS) methods. Large numbers of compounds selected from a library are screened against a biological target, e.g. a protein playing a fundamental role for a particular disease. Nowadays, it is possible to assemble chemical building blocks in all combinations, generating large virtual libraries of structurally related compounds by means of automated procedures [25]. HTS methods screen these databases with a defined query, usually a pharmacophore, “testing” hundreds to millions of compounds, and looking for relevant information. Afterwards, data mining techniques identify novel patterns in the data, potentially useful to analyse the data sets. Combinatorial approaches seek to maximise the structural diversity of the final library, i.e. the degree of heterogeneity, that is, the structural range or dissimilarity, to ensure coverage of the largest possible expanse of chemical space in the search for bioactive molecules [26]. These computational tools improve molecular diversity and the chance of lead discoveries. The ready availability of chemical structure databases plays an important role in enhancing the drug discovery approach [27]. Combinatorial chemistry technologies have increased the number of compounds synthesised and tested for every new chemical entity and have also provided a far more cost-effective approach to the discovery of bioactive compounds, in comparison with traditional approaches.

Both molecular modelling techniques and quantitative statistical methods may be useful in elucidating structural information of active compounds. Since a biological effect seldom depends on just one or two chemical properties, multidimensional approaches are needed to take into account a large number of factors. In order to deal with complex data sets, consisting of more than one biological activity and many descriptors, advanced statistical and computational tools have been developed. These techniques allow the rapid retrieval and prediction of molecular and biological properties by means of multivariate methods and artificial intelligence techniques [29].

Structure-function correlation studies aim to broaden understanding of relationships between molecular intrinsic chemical features and physicochemical or biological properties. Such studies are Quantitative Structure-Activity Relationships (QSAR), Quantitative Structure-Property Relationships (QSPR), or Quantitative Structure-Toxicity Relationships (QSTR).

Chemical Similarity

The definition of a chemical similarity measure depends on the molecular feature under analysis, such as functional groups or common substructures. In general, it is widely assumed that the
characteristics and behaviour of substances are partially conditioned by their structure, and numerous quantitative measures of molecular similarity have been defined [30].

The definition of similarity for molecules consists of mapping the chemical space, i.e. a representation of the molecule in terms of relevant descriptors in one-dimensional space with real numbers. The definition also depends on the representation of the molecules under consideration in descriptor space. Molecules may be represented using a range of different depictions.

Representation of Chemical Structures

The characterization of chemical structure has long been of great interest even though the term was not properly described until 1861 by the Russian chemist Butlerov [31]. Butlerov defined chemical structure as the type and manner of the mutual binding of atoms in a compound, without specifying the nature of bonding. The links existing between atoms in molecules were depicted as dotted or continuous lines [32], solid rods [33], or even as tubes of force [34]. Structural formulas drawn with straight lines connecting the bonded atoms were first published in 1858 by Couper [32], and in 1864 by Crum Brown [35-37]. Since those times, several ways of characterising molecular structures have been described, from the simple enumeration of atoms to complex metabolic simulations.

A molecular structure may be represented as an ordered set of components with information concerning the relationship between those components. This information may be in the form of a list, i.e. the labelling of atoms and bonds (molecular codes), or in the form of the count of components of various types describing the mathematical properties of a structure. Such a count could be a structural invariant, which refers to the fact that irrespective of how the components are added together, the same number results. Different levels of structural description, ordered by degree of information, are listed below:

1) List of atom types that constitute the molecule.

2) Empirical formula, that is, the simplest stoichiometric formula indicating the proportion of different atoms.

3) Molecular formula, indicating the number of atoms of each type. This corresponds to the formula needed to calculate the molecular mass.

4) In contrast to the one-dimensional constitutional information provided by the preceding formulas, the two-dimensional structural formula represents the arrangement of atoms using the topology of the molecule and the connectivity of the constituting atoms. The graph, a variant of the structural formula, omits the type of atom and nature of bonding. Alternative representations have been designed such as the Simplified Molecular Input Line Entry Specification (SMILES) [38] and InCHI codes [39].
5) Three-dimensional structures describe the structure of the molecule as a three-dimensional entity with the atoms situated in specific positions in the space (x,y,z, coordinates), thus providing geometrical and spatial information.

6) Solutions of the Schrödinger equation, including a description of the charge distribution, constitute the most accurate descriptions (depending on the level of theory used to solve them) but are generally computationally intensive.

In general, the representation of a chemical can be considered in terms of constitution, configuration, and conformation. Constitution provides information about the sequence of bonding of atoms and is expressed by topological descriptors, presence and absence of fragments, and descriptors that account for the two-dimensional features of a molecule. Configuration is defined by a three-dimensional or spatial arrangement of atoms, characterized by angles, and is expressed by shape descriptors and approaches accounting for the three-dimensional arrangement of atoms. Finally, conformations represent thermodynamically stable spatial arrangements of the atoms of a molecule.

A number of methods for the quantitative description of molecular structures have been proposed and applied. Different descriptors can be employed for the formulation of structure-function relationships depending on the theoretical basis adopted for the description of the structure of molecules.

A common issue in QSAR is how to describe molecules and their properties. The nature of the descriptors used and the extent to which they encode the structural features related to the biological activity is a crucial part of a QSAR study [40]. It has been estimated that more than 3,000 molecular descriptors are now available [41-42]. Most of them can be theoretically calculated by using commercial software packages such as DRAGON [43], ADAPT [44-45], OASIS [46], and CODESSA [47], among others.

The main descriptors used to characterise chemical compounds can be arbitrarily classified in different groups:

1) **Empirical parameters derived from organic chemistry.** These are used in classical QSAR models, for example Hansch analysis. Initially, these models were based on several types of physicochemical descriptors, classified into electronic, hydrophobic, and steric (where electronic refers to the charge distribution of electrons in a molecule, hydrophobic relates the affinity for water and steric the geometric size and shape of a molecule). Subsequently other descriptors were also included, i.e. experimental properties such as solubility, melting point, boiling point, spectroscopic descriptors.
2) **Theoretically determined properties.** This group includes topological descriptors as well as parameters derived from computational chemistry. The main advantage of these descriptors is that they can be calculated.

3) **Three-dimensional descriptors.** These parameters, used in 3D-QSAR techniques, take into account the three-dimensional structure of molecules and they may require a molecular superposition procedure. This group includes molecular similarity indices and topological quantum similarity indices.

The influence of structural characteristics on activity may be localised to the whole molecule or a part of it as described below.

a) **Substituent constants** or parameters based on fragment constants or physicochemical parameters. A significant number of these descriptors belong to the category of empirical parameters derived from physical organic chemistry. These parameters focus on how chemical reaction rates depend on differences in molecular structure. The characterization of these differences in structure resulting from differing substitutions of functional groups on a fixed core pattern has led to the development of substituent constants. These constants relate the effect of substituents on a reaction centre from one type of process to another. Some examples are electronic substituent constants, hydrophobic substituent constants and steric substituent constants.

b) **Whole molecule representations** or descriptors derived from entire molecular structures are either extensions of the substituent constant approach or completely novel descriptors. Several are based on the spatial conformation of compounds and therefore require a molecular superposition process. Other examples include electronic whole molecule descriptors, polar descriptors, energetic descriptors, geometric descriptors, topological descriptors, information-content indices, as well as quantum similarity indices. The latter are derived from quantum mechanical calculations that take into account three-dimensional conformational information.

Similarity indices

There are many different types of similarity indices, which can be derived from the similarity matrix \(\{Z_{AB}\} \), where \(A \) and \(B \) are the two molecules being compared:
where \(n \) is the number of molecules, and \(Z \) the similarity matrix.

Some of the more commonly used indices are:

Distance-like dissimilarity indices are measures of dissimilarity between objects or measures of the distance in a multidimensional geometric space. Their metrics have the following properties:

\[
D_{AB} \geq 0 \\
D_{AA} = D_{BB} = 0 \\
D_{AB} = D_{BA} \\
D_{AB} \leq D_{AC} + D_{CB} \\
A \neq B \iff D_{AB} > 0
\]

The general definition of a distance dissimilarity index, which lies between the value of zero for identical molecules and infinity, can be expressed as:

\[
D_{AB}(k, x) = \frac{[k(Z_{AA} + Z_{BB})/2 - xZ_{AB}]^{1/2}}{D_{AB} = [0, \infty)}
\]

The Euclidean Distance Index \((k = x = 2) \) can be defined according to the classical definition of distance [48]:

\[
D_{AB} = \sqrt{Z_{AA} + Z_{BB} - 2Z_{AB}}
\]

\(D_{AB} \) is comprised within the interval \([0, \infty)\) but, in contrast to the previous case, values close to zero imply a greater similarity between the compared objects. Hence if the two compared objects are identical, \(D_{AB} = 0\).

Geometrically, this index may be interpreted as the norm of the difference between the density functions of the compared objects. The Euclidean distance index can be defined as a distance or dissimilarity index, also called a **D-class** index.

Other distance-coefficients are the Hamming distance and the Soergel distance.
Correlation-like similarity indices

The general definition for such an index can be expressed as:

\[V_{AB}(k, x) = (k - x)Z_{AB}D_{AB}^{-2}(k, x) \quad V_{AB} = [0,1] \]

Some examples of such indices are the following:

1) **Hodgkin – Richards Index** [49] \((k = 2; x = 0)\)

\[H_{AB} = 2Z_{AB}[Z_{AA} + Z_{BB}]^{-1} \]

2) **Tanimoto Index** [50] \((k = 2; x = 1)\)

\[T_{AB} = 2Z_{AB}[Z_{AA} + Z_{BB} - Z_{AB}]^{-1} \]

3) **Cosine-like similarity index or Carbó Index.**

\[C_{AB} = Z_{AB}[Z_{AA}Z_{BB}]^{1/2} \]

\(C_{AB}\) varies in the interval \((0,1]\). The nearer the value to unity, the more similar are the compared objects, while a value approaching zero indicates that the two objects are dissimilar. The exact value of one is only obtained when both compared objects are the same, that is, in the case of self similarity measures, where \(C_{AB} = 1\). In other words, an object is identical to itself.

Geometrically, the Carbó index can be interpreted as the cosine of the angle subtended by the involved electronic density functions, treated as vectors. The Carbó index is a correlation-like or cosinus index, also called **C-class** index.

Some studies comparing the Quantum Similarity Measures (QSM) generated by different operators and a variety of Quantum Similarity Indices (QSI) have been reported in the literature [51-53].
The use of similarity measures in defining the applicability domain of skin sensitisation SARs

Validation of Sensitisation Rules within the DEREKfW Expert System

DEREK is a knowledge-based expert system that identifies the structural features of a chemical that may result in a manifestation of toxicity. It is developed by LHASA, Ltd and by members at the School of Chemistry, University of Leeds, UK. The system contains over 320 rules for endpoints such as skin sensitisation, mutagenicity, carcinogenicity, skin and eye irritation [54].

Of these endpoints skin sensitisation and mutagenicity are perhaps the best developed within DEREK. Skin sensitisation is an endpoint of relevance for REACH and other legislation, such as the 7th Amendment to the Cosmetics Directive [55]. According to the latter, a ban on all animal testing for cosmetics will come into effect in 2009 for a number of endpoints, including skin sensitisation. Currently testing is conducted using an in vivo test, the Local Lymph Node Assay (LLNA). There are no in vitro strategies that have been developed that are sufficiently robust to assess skin sensitisation hazard. The use of structure activity techniques in this area shows great promise and for this reason, the work carried out in this project focused on the skin sensitisation endpoint.

Additionally there have been a number of efforts to collate and harmonise available data on skin sensitisation that could be useful for the development of new in vitro techniques as well as to facilitate the development of new in silico models. A dataset of 41 compounds and a more extensive dataset of 211 chemicals have been compiled by Gerberick et al [56]. These data provided a good starting point for evaluating some of the existing alerts within DEREK.

DEREK is a knowledge-based expert system comprising a number of structural rules that aim to encode structure-toxicity information with an emphasis on mechanisms. The toxicity predictions made by DEREK are the result of two processes. The program checks whether any alerts in the knowledge base match toxicophores in the query structure. The reasoning engine then assesses the likelihood of a structure being toxic. There are 9 levels of confidence: certain, probable, plausible, equivocal, doubted, improbable, impossible, open, contradicted. The reasoning model considers the following information:

- The toxicological endpoint
- The alerts that match toxicophores in the query structure
- The physicochemical property values calculated for the query structure
• The presence of an exact match between the query structure and a supporting example within the knowledge base

For skin sensitisation and photoallergenicity, DEREK uses a calculation of skin permeability, which is estimated by LogKp derived from the LogP (octanol/water partition coefficient) value and molecular weight. DEREK uses an estimated calculation of the LogP developed by Moriguchi [57]. A ClogP (BioByte Corp, USA) plug in can be used to override the Moriguchi calculation of LogP. Human logKp values are calculated from the molecular weight and logP values of a chemical by using the Potts and Guy equation [58]. This equation is derived from a data set of 93 chemicals with a molecular weight range of 18 to >750, and a logP range of -3 to +6.

The objective of this study was to investigate the feasibility of utilising different similarity measures as a means of evaluating the scope of several of the structural alerts within the DEREK system.

Method. The dataset of 211 chemicals [56] was processed through DEREK Version 7 to identify any skin sensitisation structural alerts. This dataset is referred to here as the “mastertable”. These alerts were prioritised to evaluate those alerts possessing the greatest number of chemicals. A short list of five alerts was selected and LHASA was contacted to provide the training set for each of the five alerts. The dataset for each of these alerts was compared with the mastertable to verify the extent of overlap with the chemicals used to develop the alerts. Each alert was evaluated separately. SMILES codes were generated for the mastertable chemicals (the test set) and the training set chemicals used to develop the structural alert. The test set and training set chemicals were imported into TSAR (Version 3.3) and labelled accordingly. Various descriptors were calculated by using the TSAR (Accelrys) software. Table 1 shows the number of compounds in each of the training and test sets as well as the main functional group underpinning each alert.
Table 1. Number of compounds in the training and the test set, and functional groups underpinning each alert

<table>
<thead>
<tr>
<th>Structural Requirement</th>
<th>Fragment Search</th>
<th>Alert</th>
<th>Training Set No. Compounds</th>
<th>Test Set No. Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid anhydride or analogue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X = O, S, NR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = C, H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 = any</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>405</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Haloalkane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X = Cl, Br, I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1-R3 = any except F, Cl, Br, I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>413</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Catechol or precursor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = H, acyl, alkyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 = H, acyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>418</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1,3-Diketone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1, R4 = C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2, R3 = any</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>420</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Aromatic primary or secondary amine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = C (aromatic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 = H, C, Not C=O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>427</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>234</td>
<td>53</td>
</tr>
</tbody>
</table>
A set of descriptors for all the studied chemicals was calculated by using TSAR version 3.3 molecular spreadsheet (2000, Accelrys, Oxford, England). These included molecular attributes, such as the octanol-water partition coefficient (log P), and molecular weight (MW), topological indices based on graph representations, and atom and group counts.

Formal Inference-based Recursive Modelling analysis (FIRM) [59] was performed to study the relationship between the classification of chemicals into alerts and a wealth of structural predictor variables [60]. FIRM analysis was carried out for the entire dataset, taking into account both the compounds present in the training and the test sets. The predictor variables selected by FIRM that split the two data sets were: number of N atoms, number of halogen atoms, group count for acid anhydride, 6-membered aromatic rings, number of Br atoms, 5-membered aliphatic rings, and number of H-bond acceptors. The results of the FIRM analysis model revealed accuracy of classification higher than 80%. This suggests the existence of an underlying classification pattern that allows classing the chemicals into the five differentiated alerts, according to structural features.

Principal component analysis (PCA) was then used as a statistical technique for exploratory structure similarity data analysis. PCA was performed for the descriptors chosen for the entire dataset and for each of the alerts. The results considering all the alerts simultaneously are presented in Figure 1 and Figure 2. It was possible to distinguish differentiated clusters, representing the different alerts. The grouping of chemicals in the descriptor space indicates that the compounds belonging to different alerts display differentiated structural characteristics. Thus, this trend suggests the need to treat the alerts separately, to be able to discriminate the important features for each alert.
Figure 1. Score plot of the two first principal components differentiating each alert.

![Score Plot](image1)

Figure 2. Score plot of the two first principal components differentiating the training and the test set for all the alerts.

![Score Plot](image2)
The PCA analysis was also performed for each alert separately. The first two components were generally found to describe a satisfactory amount of the information in the dataset (higher than 80%). This facilitated visualisation of the distribution of the chemicals in both training sets and test sets, which enabled a rapid inspection of the degree of similarity between compounds by using a distance measure as the discriminator for similarity. The PCA plot presents a picture of the diversity of the chemicals by using a number of non-specific descriptors. Overlaying the same descriptors for the test set chemicals allows a rapid assessment to be made of the extent to which these chemicals are similar to the training set chemicals. The similarity represented is with respect to the parameters chosen and does not necessarily indicate that these chemicals are likely to behave similarly with respect to sensitisation. The principal components of the training and test sets for each alert are displayed in **Figures 3-7**.

Figures 3-7. Principal component plots for alerts 405, 413, 418, 420, and 427.
As can be seen from the various PCA plots, using an empirical set of different descriptors failed to provide any insight about the extent of similarity between the test set chemicals and those in each training set. This could imply that the chemicals in the test set were too different to be useful in the assessment of an alert’s domain or indeed validity. Therefore, an attempt was made to obtain additional information. The OASIS software (OASIS by LMC, Bourgas, Bulgaria), which contains 160,000 chemicals with predictions for a range of endpoints, was used to identify chemicals for one of the alerts - alert 420. The plots in Figure 8 reflect the limited breadth of the training set of compounds and how many different chemicals could fit in this rule. The descriptor space was examined by using two non-relevant descriptors (log P and molecular mass), and by using the first and the second principal components (PCs) of the calculated descriptors. From the plot, it can be observed that the PCs split the training and the test sets into two separate groups. The coverage of compounds belonging to alert 420 with the OASIS database shows that a considerable number of chemicals are closely located together in the descriptor space. This could be useful to detect other chemicals with similar patterns, and to have a greater number of compounds in each alert.

Figure 8. Plots of the more relevant descriptors, the two principal components for alert 420; coverage of the descriptor space of alert 420 with the compounds underpinning the same alert in the OASIS database.

Descriptor Space for the Training/Test Sets

Coverage of the alert within the OASIS Database
There are a variety of characteristics that determine whether a chemical is likely to function as a skin sensitiser including its ability to penetrate the skin, to react with proteins and be recognized as antigenic by immune cells. The correlation of protein reactivity with skin sensitisation is well established: if a chemical is capable of reacting with protein directly or after metabolism then it has the potential to act as a sensitiser.

Consideration of the chemical properties of a wide variety of other known sensitisers and comparison with non-sensitisers led to the conclusion that binding to a protein takes place by the protein acting as a nucleophile and the sensitiser acting as an electrophile. In considering whether or not a given compound is likely to sensitise or in trying to predict whether a given compound is the active component in a sensitising mixture, the approach has been to look for electrophilic characteristics in the molecular structure. This implies that the hapten\(^1\) has chemical reactivity that allows it to form bonds with side chains of amino acids and that these reactions with protein are likely to be selective for particular amino acids depending on the chemical functionality in the sensitising chemical.

The TOPS-MODE (topological substructural molecular descriptors) approach has been used to derive QSAR models for understanding the molecular structural contribution to skin sensitisation [61]. A data set of 93 compounds was used in the development of the discriminant models. The models possess high predictivity and have been validated through the use of cross-validation and external validation sets. Various classes of chemicals and their mechanisms for skin sensitisation were presented on the basis of bond contributions. The new mechanisms proposed or modified thereafter were validated by experimental findings supporting them.

The descriptors generated from this model were calculated for each of the training and test sets and the PCA was conducted once more. The hope was that the relevant descriptors underpinning skin sensitisation were used instead and that this would provide a more meaningful comparison of chemical similarity with respect to sensitisation. The first two PCA plots shown in Figure 8 above reveal a very different perspective and reinforces how important both the context and molecular representation can be.

\(^1\) Small molecule that can react with antibodies of appropriate specificity and elicit the formation of such antibodies when conjugated to a larger antigenic molecule.
Leadscope

The Leadscope data mining tool (www.leadscope.com) was also used to study the training set and test sets for each alert. Leadscope possesses a unique chemical hierarchy containing over 27,000 chemical fingerprints. These fingerprints represent functional groups, chemical groupings, and pharmacophores that provide a presentation of a database/dataset/inventory in terms of its actual chemistry. The hierarchy can be exploited to group chemicals according to a specific level of detail.

Leadscope was used to cluster the different compounds into similar classes according to structural features; in this case, the structural information was coded into two-dimensional fingerprints. A total of 42 different clusters were obtained, with each cluster being formed by the compounds underpinning a certain fragment fingerprint. In most cases, the representative ID structure for each cluster corresponded to a structural alert, or a fragment of it. This is indicative of the existence of a structural classification trend, which allows classification of chemicals into structure-based class alerts.

The Leadscope tool was also used to assess the domain of the test set with respect to the training set, revealing that in general test set compounds are very different from the training set.

Conclusions

The preliminary findings confirm how context-dependent chemical similarity truly is. This is particularly important for defining the applicability domain of SARs in a meaningful way. Future work should seek to identify additional test data (chemicals) to supplement the training set of chemicals as well as to explore other means of encoding similarity for sensitisation through the use of appropriate descriptors and fingerprints, and to establish whether the applicability domains (ADs) of selected SARs (structural alerts) can be defined in a quantitative manner by using cut-off values.

The conclusions following this preliminary exploratory research suggest that to assess the AD and to validate an alert, a number of different methods should be considered. This can help to picture different and complementary relationships not revealed by a single, unique method. Although the similarity principle is assumed [12], it must be remarked that chemical similarity is context dependent; thus, different representations of chemical structure may encode different structural aspects. In addition, the similarity measure chosen for describing a given dataset should be relevant for the activity of interest. As a conclusion, no prescriptive recommendations can be drawn, other than a need to explore the chemical descriptor space in many ways.

Publication. The results obtained have been summarised in the poster presented in the CTW Berlin world congress (see Appendix 1).
Workshop on Chemical Similarity and TTC approaches

In order to develop guidance on the use of similarity measures in chemical categories and validation of SAR rules, ECB organised a workshop on Chemical Similarity and Thresholds of Toxicological Concern (TTC) approaches, on 7–8 November 2005 in Ispra. The main aims of the workshop were to discuss the terminology and review existing approaches for the categorisation of chemicals both for the development of thresholds (TTC) and chemical categories. The meeting also communicated some of the work undertaken in the area of TTC. The agenda of the meeting is given in Appendix 2.

Follow-up of the meeting

Minutes of the meeting have been drafted (see Appendix 3). In addition a summary and a detailed report of the meeting, with the input from the participants will be written. The target audience will be composed of QSAR researchers as well as risk assessors in Regulatory agencies and in Industry.

Further Work

The preliminary work carried out in this exploratory research project highlights the need for specific expertise to calculate a broad spectrum of molecular similarity indices. The ECB has decided to fund during 2006 the development of a standalone easy-to-use software tool for this purpose. This tool will encode a variety of similarity indices to facilitate systematic and transparent justification for read across as well as chemical categories, with specific reference to current OECD guidance on the formation of categories [5].

Acknowledgements

The authors thank Carol Marchant and Kate Langton (LHASA Ltd., UK) for providing the datasets.
References

4. Website: http://europa.eu.int/comm/enterprise/reach/overview.htm

5. Section 3.2 of the OECD Manual for Investigation of HPV Chemicals: Chapter of guidance document on the formation and use of chemical categories. http://www.oecd.org/document/7/0,2340,en_2649_34379_1947463_1_1_1_1,00.html

10. ECB website: http://ecb.jrc.it
11. US Environmental Protection Agency. Site on chemical categories
 http://www.epa.gov/oppt/newchems/chemcat.htm
15. Fuson, K.C. (1978) Analysis of research needs in projective, affine and similarity geometries,
 including an evaluation of Piaget’s results in this area. In Recent Research concerning the
 Development of Spatial and Geometric Concepts. R. Lesh (Ed.) ERIC/SMEAC: Columbus,
 Ohio, pp 243-260.
 Discovery 9, 277-285.
 New York.
 VCH: Weinheim.
 American Chemical Society: Washington.

Appendix 1.
Poster presented in the 5th World Congress on Alternatives & Animal Use in the Life Sciences, held in Berlin, on 21-25 August.

The use of Similarity Measures in defining the Applicability Domain of Skin Sensitisation SARs

FIFTH WORLD CONGRESS
ALTERNATIVE CONGRESS TRUST

A. Gallegos*, G. Patlewicz, A.P. Worth
European Chemicals Bureau (ECB), Institute for Health and Consumer Protection
European Commission - Joint Research Centre, 21020 Ispra, Italy

INTRODUCTION

In the proposed REACH legislation1, some 30,000 chemicals will require an evaluation for their toxicological and ecotoxicological profiles. Experimental testing for this number of chemicals is not feasible from both a time and cost perspective. However, in silico approaches such as QSARs, read-across, and chemical categories are thought to show promise from both an economic and animal welfare perspective.

The REACH Regulation states that QSARs may be used to indicate the presence or absence of a certain hazardous property if the following conditions are met:

- results are adequate for the purpose of classification and labelling and risk assessment;
- adequate and reliable documentation of the method is provided.

Preliminary investigations

Five alerts (acid anhydride or anolgue, cationic or pressurised, 1,3-diketone, aromatic primary or secondary amine, and haloalkane) were chosen from the DEREF for Windows skin sensitisation database. The training set of compounds used to derive the rules were supplied by LHASA Ltd. A dataset of compiled LINN data was used to identify potential test set compounds that could be used to explore the scope of these alerts.

SIMILES (Simulated Molecular Input Line Entry System) codes were generated for both training and test sets of chemicals for each of the five alerts. A number of descriptors (including Log P, MW, and a variety of molecular properties and indices) were calculated using the TSAR (Acosys Ltd) software. Principal Components Analysis was performed on these descriptors. The first two components in each case were found to describe over 85% of the information in the dataset.

In the (Q)SAR field, the applicability domain (AD) is widely understood to express the scope and limitations of a model, i.e. the range of chemical structures for which the model is considered to be applicable. For QSAR models, the parameter space is typically represented by ranges of physicochemical descriptors. For SARs models in the form of structural alerts, the parameter space is typically represented by the structural feature that defines the presence of a hazard.

The aim of this work is to explore the utility of chemical similarity measures as a means of defining the applicability domain for a set of skin sensitization structural rules. Preliminary analysis confirms that chemical similarity is context dependent. Parameters that encode sensitisation are more meaningful than general descriptors.

Preliminary investigations

In the proposed REACH legislation, some 30,000 chemicals will require an evaluation for their toxicological and ecotoxicological profiles. Experimental testing for this number of chemicals is not feasible from both a time and cost perspective. However, in silico approaches such as QSARs, read-across, and chemical categories are thought to show promise from both an economic and animal welfare perspective.

The REACH Regulation states that QSARs may be used to indicate the presence or absence of a certain hazardous property if the following conditions are met:

- results are adequate for the purpose of classification and labelling and risk assessment;
- adequate and reliable documentation of the method is provided.

The AD is perhaps a very difficult concept to apply. For SARs such as structural alerts, the domain may be represented by the structural feature that defines the presence of a hazard. However this definition presents difficulties as to when it is appropriate to use a structural alert or not. Consider the following example, an alert is expressed by the presence of a specific fragment together with one or more conditions associated with the immediate environment. With this in mind, how can the end-user be certain that is it appropriate to apply a structural alert to a new query structure; what are the boundaries of the given alert that dictate at which point the alert no longer is indicative of the effect.

One way of evaluating this boundary is to explore structural similarity indices provide a meaningful quantification of the boundary. The approach would be to examine the training set chemicals used to derive the alert for any of the features describing the toxicity response enable cut-offs to be defined, which would provide a transparent means of determining when it is more or less reliable to apply the structural alert. The approach taken here was to consider different approaches for encoding chemical similarity and to explore their application to a set of structural alerts for skin sensitisation that are encoded into the DEREF expert system.

INFORMATION

CONTACT DETAILS : ana.gallegos@jrc.it

ACKNOWLEDGEMENTS

We gratefully acknowledge Carol Merchant and Kate Langton LHASA Ltd for providing training set information for each of the alerts.

CONCLUSIONS AND FURTHER WORK

Preliminary analysis confirms that chemical similarity is highly context-dependent. This is particularly important for defining the applicability domain of SARs in a meaningful way. Future work will seek to identify additional test data (chemicals) to supplement the training set of chemicals; b) explore other means of encoding similarity for sensitisation through the use of appropriate descriptors and fingerprints; and c) establish whether the ADs of selected SARs (structural alerts) can be defined in a quantitative manner by using cut-off values.

Figure 1

Figure 2

Figure 3

CONTACT DETAILS : ana.gallegos@jrc.it

5F

2005.
Appendix 2.

Agenda of the consultation meeting on chemical similarity and TTC approaches, held in Ispra, on 7 – 8 November 2005.

Day 1 – Chemical Similarity (7 November)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00</td>
<td>Start of the meeting Day 1</td>
</tr>
<tr>
<td>09.00-09.20</td>
<td>Introduction of the participants. Aims and organisation of the meeting (Andrew Worth)</td>
</tr>
<tr>
<td>09.30-10.15</td>
<td>Chemical Similarity - an overview (Nina Jeliazkova)</td>
</tr>
<tr>
<td>10.15-10.45</td>
<td>Insights on Chemical Quantum Molecular Similarity Indices (Ana Gallegos)</td>
</tr>
<tr>
<td>10.45-11.15</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11.15-11.45</td>
<td>Chemical similarity in database searching (Val Gillet)</td>
</tr>
<tr>
<td>11.45-12.15</td>
<td>The concept of chemical categories (Brigitte Simon-Hettich)</td>
</tr>
<tr>
<td>12.15-12.45</td>
<td>Experiences in chemical series definition and chemical similarity (Aldo Benigni)</td>
</tr>
<tr>
<td>12.45-14.00</td>
<td>Lunch</td>
</tr>
<tr>
<td>14.00-14.30</td>
<td>From classification schemes for chemical structures to virtual biological profiling of chemical libraries (Jordi Mestres)</td>
</tr>
<tr>
<td>14.30-15.00</td>
<td>Introduction to the brainstorming and formulation of open questions (Grace Patlewicz)</td>
</tr>
<tr>
<td>15.00-15.30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15.30-17.00</td>
<td>Discussion/ brainstorming on applicability of the techniques</td>
</tr>
<tr>
<td>17.00-17.30</td>
<td>Conclusions and recommendations.</td>
</tr>
<tr>
<td>17.45</td>
<td>End of Day 1</td>
</tr>
</tbody>
</table>
Day 2 – TTC (8 November)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00</td>
<td>Start of Day 2</td>
</tr>
<tr>
<td>9.00-9.30</td>
<td>Review of Day 1</td>
</tr>
<tr>
<td>9.15-10.00</td>
<td>TTC - an OFAS perspective (Andrew McDougal (conference call)</td>
</tr>
<tr>
<td>10.00-10.45</td>
<td>The Threshold of Toxicological Concern concept (Ian Munro)</td>
</tr>
<tr>
<td>10.45-11.15</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11.15-11.45</td>
<td>TTC - Literature review and applicability (Maria Wallén)</td>
</tr>
<tr>
<td>11.45-12.15</td>
<td>TTC - a SEAC perspective (Bob Safford)</td>
</tr>
<tr>
<td>12.15-12.45</td>
<td>TTC - Cramer classification scheme : a toolbox (Nina Jeliazkova)</td>
</tr>
<tr>
<td>12.45-14.15</td>
<td>Lunch</td>
</tr>
<tr>
<td>14.15-15.00</td>
<td>Overview of grouping (Chihae Yang)</td>
</tr>
<tr>
<td>15.00-15.30</td>
<td>Introduction to the brainstorming (Grace Patlewicz)</td>
</tr>
<tr>
<td>15.30-16.00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16.00-16.30</td>
<td>Discussion/ brainstorming on applicability of the techniques</td>
</tr>
<tr>
<td>16.30-17.00</td>
<td>Conclusions and Recommendations – Report writing and next steps</td>
</tr>
<tr>
<td>17.00</td>
<td>End of Day 2 and of the meeting – Transport to the airport</td>
</tr>
</tbody>
</table>
Appendix 3.

Minutes of the consultation meeting on chemical similarity and TTC approaches, held in Ispra, on 7 – 8 November 2005.

Meeting Minutes

The meeting was chaired by Grace Patlewicz (ECB), who opened the workshop by welcoming the participants through a roundtable of introductions.

Presentations were made by several of the participants in order to provide an overview of ongoing activities from the perspective of different organisations (academia, industry, and regulatory organisations). This gave a perspective of some of the approaches available in the field of Chemical Similarity and TTC and how they were being applied. The presentations helped to structure the afternoon plenary discussions aimed at capturing potential strategies for Chemical Category development as well as research needs or opportunities.

Day 1 – Chemical Similarity

Andrew Worth (ECB) presented the aims, organisation and structure of the meeting. He briefly outlined the structure of the European Commission, the role of the JRC and that of ECB within the scientific and technical preparations for REACH. He presented the scope of the meeting namely, a review of approaches for chemical similarity and thresholds of toxicological concern. These approaches are of specific interest to the QSAR group since chemical similarity techniques could be potentially used to help classify chemicals into similarity-based chemical categories for read-across; and thresholds of toxicological concern for human health endpoints could help to evolve integrated testing strategies. He explained that the two topics (TTC and chemical similarity) had been combined into a single meeting, because they are basically both grouping approaches. Chemical similarity approaches provide a means of grouping chemicals for hazard identification (classification) purposes, whereas TTC approaches could be adapted to group chemicals according to their potency, i.e. provide a means of quantitative read-across.

Nina Jeliazkova (IDEA Consult Ltd.) presented a literature-based review on chemical similarity. She began by presenting similarity as an intuitive concept widely used in philosophy as well as many other disciplines. A meaningful, unambiguous and useful measure of similarity is needed to capture the resemblance in relation to the aspect to be described. She highlighted a myriad of different approaches for measuring the similarity between chemicals, from simple fingerprint counts, to 3D similarity including quantum chemistry field-based approaches. She stressed some of the main advantages and disadvantages of these different methods, depending on the numerical representation chosen for the molecular structures and the different types of similarity indices that are available. She concluded by highlighting several caveats for chemical similarity, in particular, how there is always a loss of information associated with any similarity measure; how some measures may not correctly represent the intuitive similarity between two chemicals; or even that structure may not be the sole factor for biological activity and that structurally similar molecules may still have differing mechanisms of action.

Ana Gallegos (ECB) presented some theoretical insights on the formulation of molecular similarity indices based on quantum mechanics calculations. She started by presenting the foundation of quantum similarity theory based on the characterisation of molecular
structures by electronic density functions. She illustrated several approaches used to calculate first-order electronic density functions which minimise computational costs but preserve accuracy. The atomic shell approximation (ASA), and the promolecular ASA (PASA) are examples of these. She also presented different algorithms for molecular superposition, based on the maximal similarity alignment rule or the topo-geometrical superposition rule. She introduced topological quantum similarity measures based on the classical topological representation of molecular structures by molecular graphs. She stressed the novelty of this approach in that by substituting classical topological two-dimensional matrices with quantum derived matrices, important three-dimensional information can be accounted for.

Val Gillet (University of Sheffield) presented chemical similarity techniques used in database searching and applied in the pharmaceutical industry. These measures are based on the calculation of the pairwise similarity between a known active molecule and each database compound, and the subsequent ranking of the compounds according to their similarity to the known active. She presented similarity measures based on the representation of compounds by two-dimensional fingerprints (vectors with the binary values of 0 and 1, accounting for the absence or presence of certain fragments), and using the Tanimoto index as a quantitative measure of similarity. She also presented a novel method based on the assignment of four properties to each functional group, encoded by triplets of strings, and the use of reduced graphs. She finally illustrated the theoretical basis with several virtual screening, and data fusion experiments, based on the combination of different rankings on the same sets of molecules.

Brigitte Simon-Hettich (Merck Institute of Toxicology) provided an overview of the chemical category concept from a toxicological point of view, including some examples from the notification of new chemicals in the EU. She introduced the chemical category concept based on its use within the US EPA and the OECD. The main advantages of categories are their potential savings in cost, time, resources, and animal experimentation. She illustrated the principles of the US EPA approach and the OECD approach with some examples. The OECD approach groups compounds which show a predictable pattern in physicochemical properties, environmental fate, environmental effects or human health effects in order to identify and fill in data gaps for relevant endpoints. She raised some questions and concerns related to categories based on common functional groups, metabolic pathways, and incremental changes in groups. For example, the practicality and utility of forming categories based on metabolic pathways was questioned. She also highlighted the need for chemical categories based on common mechanisms of action.

Romualdo Benigni (Istituto Superiore di Sanità) provided theoretical insights and practical examples based on the definition of chemical series, and on the use of chemical similarity in the context of categorizing biologically active chemicals. He started by raising the issue of why there is a need to define a valid chemical similarity measure and gradual scales of it. He highlighted the need for a subdivision between predictions of the biological activity of untested compounds from known QSAR into predictions within the spanned substituent space (SSS) and predictions outside the SSS. Presenting a series of real life analyses, he showed that different representations of the molecules can be highly correlated at the level of the universe of chemicals, while behaving very differently at the fine grain scale. This implies that the selection of the chemical descriptors has dramatic consequences on the issue of categorizing the chemicals. In addition, he showed that categories based only on the chemical theory do not encompass the toxicological properties. He concluded that the chemical similarity approaches for the categorization of the chemicals should incorporate, and give a major weight to the mechanistic knowledge on the biological activity of the molecules.
Jordi Mestres (Municipal Institute of Medical Research) presented new challenges and achievements in the field of chemogenomics. He started by explaining the transition from mapping chemical and biological entities to obtain QSAR to using high throughput mapping techniques (virtual screening and profiling) to produce vast chemogenomic spaces. He showed several classification schemes for both chemical and biological entities and how this is important to facilitate extraction of knowledge from stored data. For biological entities, he presented unified classification schemes based on unique digit codes, illustrating their use for enzymes and nuclear receptors. For chemical entities, he presented a hierarchical classification scheme for chemical structures, based on the molecular equivalence number (MEQNUM) algorithm. This method uses graph chemical identifiers for different levels of description of molecules (scaffold, sidechains, links, ring systems, and rings) to derive a unique chemical structure code. This classification scheme is very useful for storing data in databases and can enable filling of annotation gaps in the chemogenomic space.

Grace Patlewicz (ECB) introduced the plenary discussion. Using some open questions, she led the discussion on what might be the different steps in a process map for developing chemical categories. The discussion centred on endpoints of high priority within REACH, including skin sensitisation, mutagenicity, carcinogenicity, endocrine disruption and reprotoxicity. The first three endpoints are perhaps better understood in terms of their “mechanisms” or at least there is more toxicity data associated with them that enables associations between chemical structure and effect to be made. For example there is a reasonable amount of public information available for mutagenicity and carcinogenicity from the Carcinogenicity Potency DataBase (CPDB), or US National Toxicology Program (NTP), whereas reprotoxicity data is substantially more limited. The suggestion was that knowledge about these endpoints (from toxicologists) could be formulated into simple structural rules, either by using statistical techniques on the available public datasets and cross checking the output with human experts or by interrogating the experts themselves and encoding their knowledge into a computer program. If data was more limited, surrogate assays could be promising tools in formulating mechanistic hypotheses e.g. the information derived from a peptide binding assay may provide sufficient information to enable some mechanistic information to be derived that can help in the formulation of groupings for skin sensitization. Additionally, metabolism information (using data derived from pharmacologists to determine which chemicals are activated, glucuronidated, sulphonated etc) could be used to understand more about the inherent behaviour of chemicals in order to formulate groupings. Often although mechanistic insights are strong, toxicity cannot be confidently predicted from the structure because the chemistry cannot be predicted. In such cases an “in chemico” approach involving, as appropriate, identification of reaction products, measurement of rate constants and if necessary investigation of oxidation chemistry, can make confident prediction possible, using mechanism based QSAR and Intelligent read-across (i.e. based on comparisons within the same mechanistic applicability domain).
Day 2 – Thresholds of Toxicological Concern

Grace Patlewicz (ECB) summarised the discussions carried out on the first day on chemical category formation.

Andrew McDougal (FDA) was unable to participate in person, but he provided a recorded presentation on how TTCs are applied within the US FDA’s Office of Food Additive Safety (OFAS). He started by defining the concept of TTC and how it is used as a prioritisation tool within the FDA. He introduced the TOR (threshold of regulation) concept and explained that the Gold (CPDB) database had been used to define the TOR. He outlined current strategies for refining the TOR, such as using structural classes to identify chemicals of higher concern as well as the use of genetic assays that could lower the risk of carcinogenicity. A combination of the Ames test, mouse lymphoma assay and chromosome aberration assay helped to lower the incidence of carcinogens. An OFAS perspective on chemical similarity was provided – focussing on the (Q)SAR tools used, as well as current efforts to organise historical data into structure searchable databases. Following the recorded presentation, Andrew dialled in from the US to take any questions.

Ian Munro (CANTOX Health Sciences International) presented the concepts and assumptions underpinning TTC. He provided an extensive history of TTC and its evolution from the sixties to the present time. He presented an analysis of the threshold values for the carcinogenic compounds in the Gold database, and for non-carcinogenic endpoints. He also presented the Cramer classification tree as a means of classifying substances into one of 3 structural classes which could be used to define different human exposure thresholds. Finally he illustrated how these thresholds have been applied in the safety evaluation of flavouring ingredients by JECFA, an international expert scientific committee administered jointly by the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO).

Maria Wallén (Swedish Chemicals Inspectorate) presented a concise literature review and summary of different TTC approaches that had been carried out by KeMI. In particular she highlighted the advantages, limitations, and uncertainties of this approaches.

Bob Safford (SEAC, Unilever) presented current in house work being undertaken in the area of TTC. He presented the TTC as a useful approach in cases of low consumer exposure; such as contaminant incidents, indirect food additives or flavour components in food. Given that the premise of TTC is that 20% of chemicals are carcinogenic, he discussed whether the use of additional information (in silico, in vitro) could lower the incidence of carcinogens. Using the Gold (CPDB) dataset as a starting point, he used the Cramer classification scheme implemented in ToxTree to classify the chemicals into one of three classes. DEREK was used to identify any structural alerts for mutagenicity and carcinogenicity and Ames or mouse lymphoma data (MLA) was taken from the literature. Each piece of information helped to lower the incidence of carcinogens but the MLA was the most effective. DEREK was comparable to the Ames test in reducing the incidence of carcinogens whereas the Cramer classification scheme was found to be over conservative.

Nina Jeliazkova (IDEA Consult Ltd.) gave an overview of the Cramer scheme and demonstrated how this had been encoded into a new piece of software called Toxtree Version 1. She outlined some of the challenges she had encountered in building the software and approaches to resolve these. She also gave a demonstration of the software, showing how easy it was to process one or many structures and how to view the results.

39
generated. The software development was funded by ECB and the application will shortly be made available as a free download from the ECB website.

Chihae Yang (Leadscope® Inc.) presented an overview of grouping, adapted to the outcomes and discussions of the workshop. She started presenting a classification of grouping methods, from knowledge-based methods including the TTC approach, to supervised and unsupervised methods. She exemplified the different grouping methods implemented in Leadscope software, i.e. expert rules that group chemicals into pre-defined hierarchical classes (more than 27000 fragments), Tanimoto, and Jaccard distance similarity coefficients calculated on fingerprints, unsupervised agglomerative nesting methods, supervised recursive partitioning, recursive partitioning with simulated annealing, new measures being currently developed such as bitset, and the modified Tanimoto coefficient, and analogue (surrogate) based grouping techniques. The decision trees generated by machine learning method can augment the knowledge-based TTC approach. Strategies to sequentially grouping compounds were also presented.

Grace Patlewicz (ECB) introduced the second brainstorming session and led the plenary discussion on the basis of a number of issues and questions that arose from the morning’s presentations. Discussion points included what modifications if any should be undertaken for the Cramer classification tool, whether TTC could be applied for other endpoints such as skin sensitisation, and what aspects of TTC could be applied in the context of REACH. It was generally agreed that the TTC concept could be difficult to apply in the context of industrial chemicals, since the necessary exposure information is rarely available, and there can be a complex chain of uses down the supply chain. She summarised some of the consensus conclusions and recommendations and outlined the next steps in drafting a report. The participants were thanked for their attendance and contribution and the workshop was closed with a final coffee break.

Ana Gallegos

Grace Patlewicz

25 November 2005